Stage/atelier : Comprendre et concevoir votre installation solaire électrique autonome

Pour le moment aucune formation « comprendre et concevoir son installation solaire autonome » n’est planifier en présentiel à ce jour. Mais si vous souhaitez être informé des dates futurs laissez votre e-mail :

Parce qu’à mon sens, la sobriété est complexe dans ce monde d’abondance apparente. Je vous propose un petit atelier de formation d’une journée afin de vous initier à l’autonomie électrique photovoltaïque. Vous repartirez avec les clés pour comprendre et concevoir votre installation solaire autonome. Cet atelier est organisé chez moi, à la paillourte avec mon installation solaire comme support pédagogique.

Le savoir partagé :

  • Compréhension des éléments de l’installation solaire autonome : production, stockage, gestion et transformation de l’énergie, sécurité ;
  • L’estimation de ces besoins électriques journaliers ;
  • Dimensionnement de leur système électrique autonome (combien de panneaux, puissance du régulateur etc…) en fonction de ces besoins ;
  • La capacité d’installer son propre système solaire autonome (choix matériel, câblage…) ;
  • La capacité de maintenir son installation en état de fonctionnement en ayant intégré les contraires techniques des différents éléments (ex : température idéal pour les batteries, courant de charge maximum…) ;
  • Des clefs pour gérer le surplus énergétique ;
  • Le coût, la rentabilité ;
  • Une vidéo « replay » de la formation sera mis à disposition ;

Ce qui ne sera pas abordé durant ce stage :

  • Les panneaux solaires raccordés au réseau (auto-consommation / revente partielle ou totale)

Public : le citoyen X, Y, le toi, le nous ! (Aucun niveau de connaissances préalables n’est requis). La jauge est de 10 personnes.

: A Rouans (44640), prêt de Nantes

  • En transport en commun : Vous pouvez venir jusqu’en Train sur Nantes, il y a un Car (ligne 301 aleop) qui part de la gare SNCF pour venir jusqu’à Rouans.

Quand : 2 dates prochainement :

  • 13-14 juin 2020 de 9h30 à ~17h30 (réserver)
  • 29-30 août 2020 de 9h30 à ~17h00 (réserver)

Prix : libre et conscient (à lire pour être en plein accord) – un acompte de 10€ pour valider la réservation est demandé.

Hébergement possible :

  • Vous pouvez planter une tente dans le jardin, garer votre votre camion / camping-car gratuitement dans le terrain. Soyez autonome.
  • Louer une chambre d’hôte, 2 adresses accessible à pied :

Infos supplémentaires :

  • Pour les repas je propose :
    • Samedi midi : auberge espagnol (chacun apporte un plat, on pose tout sur la table et on partage)
    • Samedi soir : pour ceux qui souhait rester manger apporter de quoi cuisiner et on cuisine ensemble
    • Dimanche matin : offert (pain/café/thé/tisane)
    • Dimanche midi : repas offert: « grâlées de mogette »
  • Apportez calculatrice, papier, crayon
  • Si vous voulez vous rapprocher le plus possible de la vérité, venez avec la liste de vos appareils électriques ainsi que la puissance (en Watt) de chacun. Un petit logiciel pour vous y aider : david.mercereau.info/AtelierPv/

Contactez moi pour tout détails

PvMonit v2.0 + Domotique : Gestion surplus électrique solaire en autonomie

Je ne maintient actuellement plus PvMonit. Je tâche de faire prochainement un article pour vous donner quelques alternative.

Ou comment utiliser le surplus d’une installation solaire autonome

Dans le cas d’une installation solaire autonome (non raccordée au réseau EDF), une fois que les batteries sont rechargées (ce qui se produit aux alentours de 11h-12h pour moi 80% du temps), il y a de l’énergie potentielle de perdue. Plus précisément, si je n’utilise pas cette énergie au moment où il y a du soleil (de la production), cette énergie n’est pas utilisée. On peut augmenter le stockage mais c’est infini, coûteux en argent et en ressource environnementale. Voilà un graphique pour illustrer ce propos :

Courbe production solaire estivale en situation d’autonomie électrique avec des panneaux photovoltaïques

Du coup, il m’a semblé pertinent de réfléchir à un moyen d’automatiser certaines tâches qui me permettent d’utiliser ce surplus d’électricité quand il est là. Actuellement, je le fais de façon tout à fait manuelle : quand les batteries sont pleines et qu’il y a du soleil, je lance une machine à laver, je lance la pompe de relevage de la phyto, je recharge mes batteries d’outils portatifs…. Cette automatisation va aussi me permettre d’aller plus loin & d’envisager d’installer un petit chauffe-eau électrique de camion (~10L) ou autres…

Grâce à PvMonit, j’avais déjà une remontée d’informations sur l’état de l’installation solaire, des batteries, de la production qui m’arrivait sur un Raspberry PI. Il ne me restait plus qu’à « piloter des prises électriques » en fonction de l’état de l’installation solaire et des conditions que je donne au programme.

Soutenir / Commander

Si vous voulez soutenir le projet ou que vous n’avez pas suffisamment de compétences pour faire tout ça, je peux tout vous préparer à la maison, il n’y aura plus qu’à brancher… C’est à prix libre et c’est sur mesure selon vos compétences/besoins, on en parle ? : https://david.mercereau.info/pvmonit/#shop

Le projet, en vidéo

Le projet, en image

Voilà de quoi est composé le tout :

  • Le raspberry pi (zéro ça suffit) sur lequel est installé PvMonit (expliqué ici) : compter entre 110 et 200€ de matériel
  • Carte module 8 relais 8,99€
  • TM1638 Afficheur 8 chiffres 7 segments, 8 LEDs, 8 boutons (option) 5,49€

Si vous n’aimez pas les vidéos je vous mets des z’images :

Installation

Pour l’installation, vous pouvez vous reporter au dépôt du code source PvMonit, dossier « domo » : https://framagit.org/kepon/PvMonit/blob/master/domo/

Si vous avez des questions / bugs, c’est par ici : https://framagit.org/kepon/PvMonit/issues

PvMonit v1.0 : Monitoring de mon installation photovoltaïque autonome

Je ne maintient actuellement plus PvMonit. Je tâche de faire prochainement un article pour vous donner quelques alternative.

PvMonit est arrivé à une version « mature », une version 1.0. PvMonit est un logiciel sous licence Beerware qui vous permet de monitorer votre installation électrique solaire autonome, plus particulièrement avec les appareils Victron.

Nouvelle version pvmonit dispo ici. Avec une « sur-couche » à PvMonit pour gérer le surplus d’électricité : Déclencher des actions à la demande. Exemple : les batteries sont pleines, on allume une pompe à eau puis la résistance électrique d’un chauffe eau. Ou encore, les batteries sont sous un seuil critique, on coupe tout sauf l’éclairage…. toutes les applications sont possibles !

PvMonit C’est quoi ?

PvMonit, c’est donc un petit logiciel de monitoring photovoltaïque pour matériel Victron compatible Ve.direct (le minimum pour que cela fonctionne est d’avoir un BMV 600, 700 ou 702…), particulièrement adapté pour les installations autonomes (hors réseau). Il permet une vue « en direct » par interface web et un enregistrement de l’historique (avec emoncms, branche d’OpenEnergyMonitor).

Mon usage

Je collecte les information de mon système photovoltaïque (température, état des batteries, production solaire, etc…) par une carte électronique (Arduino) qui se trouve dans un local à 35m de mon habitation. Je transporte ces données par un 3 fils dans un câble réseau. Celui-ci est connecté à un mini ordinateur (raspberry pi 0) sur lequel j’ai un écran LCD qui m’affiche l’état du système et j’ai un interface web (démo) ou j’ai plus de détails. Il y a aussi un historique qui est enregistré via emoncms (démo).

Au niveau Matériel

2 versions possibles :

  • Une version Raspberry PI 3B, si vous avez un point wifi actif (même occasionnellement) et que votre matériel solaire est à porté de wifi. C’est une solution plutôt simple (si on touche un peu sous linux).
  • Une version Raspberry Pi 0 + Arduino : plus complexe à mettre en œuvre (il faut savoir souder et avoir plus de connaissances), mais beaucoup plus souple et moins chère. Particulièrement adapté si votre installation réseau est loin (max 60m) de votre maison ;
Version Raspberry PI 3BVersion Arduino + Raspberry Pi 0
Consommation électrique0,37A (pi 3b) * 5V = ~1,85W0,22A (pi 0) + 0,08A (arduino MEGA) = 0,30A * 5V = ~1,5W
Difficulté********
Prix matériel (détails)200 €110 €

Raspberry Pi 3B & Ve.direct USB (officiel)

L’usage des câbles ve.direct USB officiel permet de simplifier le montage.

Arduino + Raspbery Pi 0

L’usage d’un arduino pour collecter les données donne de la souplesse pour pouvoir ajouter des sondes à volonté et permet de parcourir de grande distance jusqu’au Raspberry PI qui récupère les informations. Un schéma de câblage détaillé :

Le schéma de câblage détaillé

Voilà ce que ça donne, c’est plus de boulot, plus de soudure mais plus DIY, plus fun :-p

Installation

Il ne faut pas se mentir, ça demande de bonnes connaissances techniques en linux/réseau voir arduino/soudure (si vous choisissiez cette option).

J’ai fais un très long tuto d’installation dans le fichier INSTALL.md du dépôt git : https://framagit.org/kepon/PvMonit/blob/master/INSTALL.md

Groupe électrogène, appoint pour l’autonomie solaire

J’ai maintenant un groupe électrogène pour compléter mon installation électrique autonome.. Deux raison m’ont poussé à son acquisition :

  • Pouvoir utiliser ponctuellement des appareils qui sont trop gourmands pour mon installation solaire. Typiquement, j’ai eu besoin d’un malaxeur pour faire les enduits terres de la paillourte. Celui-ci demande 1600W là ou mon installation ne peut fournir que 700W instantanément. Il aurait été ridicule de sur-dimensionner mon installation pour brancher un appareil dont je n’ai qu’un usage « rare » (quelques jours par ans)
  • Pouvoir recharger les batteries de l’installation solaire avec mon chargeur quand il y a de longues périodes sans soleil afin de garantir une longue vie aux batteries. Car même si ce sont des batteries au plomb qui sont recyclables, le recyclage nécessite de l’énergie. Et l’énergie la plus propre c’est celle dont on peut se passer.

Sur le point de « recharge des batteries ». J’ai fait un calcul :

Recharger de 10% (qui correspond à 1,5 jours d’autonomie pour moi) mes batteries équivaut à un trajet en voiture de ~8.8km

On pourrait se passer de groupe quand il ne fait pas beau sur plusieurs jours, on diminue déjà drastiquement nos besoins (estimés en temps normal à 500Wh/j/personne). Mais je crois que je ne suis pas prêt à allumer une bougie et je préfère mettre quelques jours de pétrole par an. En espérant que les bébés phoques me pardonnent…

La lecture et l’écriture de cet article a peut-être nécessité tout autant sinon plus d’énergie fossile que ce dont j’ai besoin en pétrole pour mes besoins électriques sur une journée…  C’est pas une raison mais c’est à titre de comparaison…

Pour le choix du groupe électrogène je me suis tourner vers un groupe électrogène inverter. Celui-ci garantie un signal électrique « beau » contrairement au groupe de chantier pour lequel le signal peut être aléatoire et endommager les appareils sensibles.

CalcPvAutonome en V4.0 : ouverture sur l’international

D’abord un grand merci à nednet, coucou39, guillerette, mirrim, ppmt qui ont œuvré à la traduction vers l’anglais de CalcPvAutonome suite à mon appel.

Je passe la seconde en lançant un nouvel appel à la traduction. Cette fois-ci de l’anglais vers ce que vous voulez/pouvez, Espagnol, Portugais, Italien, Espéranto, Grec… Faites-vous plaisir !

La plateforme de traduction collaborative se trouve par ici : crwd.in/calcpvautonome

Petit rappel : CalcPvAutonome est un logiciel libre (licence Beerware) et gratuit de dimensionnement d’installation photovoltaïque en site isolé (autonome). Il se veut transparent (dans la méthode), pédagogique et surtout détaché de toute structure commercial.

Autre petite nouveauté depuis mon dernier article :

  • CalcPvAutonome intègre les graph’s OFF-GRID du projet PVGIS 5
  • Un nom de domaine rien qu’a lui : calcpv.net
  • Du HTTPS sur l’application en ligne (merci Let’s Encrypt)

Pour tester, c’est par ici :

[Passerelle Eco] Concevoir son installation photovoltaïque autonome

J’ai rédigé cet article pour la revue Passerelle Eco, il est paru dans le n°64 de l’Automne 2017.

En accord avec eux, je le duplique ici même :

Nous sommes un couple et nous vivons en yourte, dans une démarche de sobriété heureuse écologiquement responsable. Pour cette raison, nous avons choisi d’aller vers l’autonomie électrique.

Dans cet article, je présente la manière de concevoir une installation photovoltaïque. Les calculs de dimensionnement peuvent être effectués avec un calculateur accessible sur internet : CalcPvAutonome. Cet outil pédagogique est libre de droit et détaché de toute structure commerciale.

Pré-requis

Se rappeler de son cours de physique de collège sur l’électricité. Rappelez-vous :

  • Ce qu’est un Watt, un Volt et un Ampère
  • La formule : P (puissance en Watts) = U (tension en volts) x I (intensité en ampères)
  • Différencier un circuit en série et un circuit en parallèle

Évaluer nos besoins électriques

C’est l’étape la plus importante. Il faut viser juste car une installation autonome s’ajuste difficilement une fois mise en route.

Pour prendre un exemple, des batteries neuves ne font pas bon ménage avec des batteries usagées, car les premières risquent de se décharger dans les secondes, ce qui les use prématurément.

Une sur-évaluation des besoins crée un gros trou dans le porte-feuille, mais a l’avantage de prolonger la durée de vie du matériel (puisqu’on ne joue pas avec ses limites) et l’usage au quotidien est moins contraignant (puisqu’il nécessite moins de surveillance).

Une sous-évaluation des besoins, au contraire, fera vieillir le matériel prématurément (~2 ans) et/ou contraindra l’usage (obligé de se limiter avant que les batteries ne soient à plat).

Besoins journalier

Pour évaluer vos besoins, il faut connaître la puissance de chacun de vos appareils électriques. Cette puissance, exprimée en Watt (W), est souvent mentionnée sur l’appareil. Si ça n’est pas le cas, vous pouvez investir dans un Wattmètre (~15€ en magasin de bricolage). C’est un appareil qu’on branche entre l’appareil et la prise de courant et qui nous indique directement sa consommation.

Une fois qu’on connaît la consommation en Watts de nos appareils, on calcule la consommation quotidienne de tous nos appareils en tenant compte de leur temps d’allumage quotidien. On l’exprime en Watts heure par jour (Wh/j).

Par exemple :

  • Un ordinateur de 40W utilisé 2 heures dans la journée : 40 W x 2 h = 80 Wh/j
  • Deux ampoules LED de 7W utilisées 4 heures dans la journée 2 x (7W x 4 h) = 56Wh/j

Avec cet équipement (ordinateur + 2 LED), ma consommation journalière serait donc de 136 Wh/j (80 Wh/j + 56 Wh/j)

Important : Il faut penser sa consommation en hiver, car c’est le moment où vous aurez le moins de soleil et c’est là où vous aurez le plus besoin d’éclairage (entre autres !).

Voici un tableau dynamique pour vous aider à estimer vos besoins journaliers : http://calconso.zici.fr

De notre côté, après avoir rempli ce tableau, j’obtiens 710Wh/j (pour nos besoins réels). Il faut savoir qu’un Français moyen c’est 5 700Wh/j et par personne (source), nous sommes 2 dans le foyer, ça fait donc 16 fois  moins de consommation que le français moyen… Réduire sa consommation est déjà un premier pas vers l’autonomie énergétique (l’énergie la plus propre c’est celle que l’on ne consomme pas). Pour obtenir 710Wh/j, nous avons fait ces choix :

  • Un (petit) réfrigérateur (50L, consomme 360Wh/j) : il n’est pas compté dans les 710Wh/j, car nous considérons la consommation hivernale, et l’hiver, il fait froid dehors… Pourquoi dépenser de l’énergie pour chauffer sa maison et en dépenser encore plus à vouloir en refroidir une petite partie ? L’hiver nous avons un garde-manger à l’extérieur sous abri et en hauteur pour les rongeurs.
  • Pas de chauffe-eau / chauffage électrique : ces équipements ne sont possibles qu’avec l’abondance du nucléaire. Sur une installation solaire écologique/sobre, à mon sens il faut bannir toute conversion électrique en chaleur (grille-pain, bouilloire, sèche-cheveux…) ainsi que toute conversion électrique en mécanique forte (scie circulaire, disqueuse…).
  • Le chauffage se fait chez nous au bois (moins de 2 stères suffisent à chauffer une yourte de 40m² pour l’hiver) et c’est le même poêle à bois qui chauffe notre eau l’hiver.

Maximum instantané

Il est aussi nécessaire de connaître la puissance maximum instantanée dont vous avez besoin. C’est l’addition de toutes les puissances des appareils qui sont susceptibles d’être allumés en même temps.

Pour nous, par exemple : Scie sauteuse (450W) + Réfrigérateur (75W) + Musique (25W) = 550 W

Les panneaux

Ce sont les panneaux photovoltaïques qui produisent l’électricité. Leur puissance s’exprime aussi en W. Ils produisent au maximum de leur capacité quand les rayons du soleil viennent les frapper à la perpendiculaire.

En France, pour une autonomie totale, mieux vaut orienter les panneaux plein Sud, dégagés de toute source d’ombre, avec une inclinaison d’environ 65°. Cette inclinaison correspond à l’inclinaison parfaite pour le mois le plus défavorable en terme d’ensoleillement : décembre ou janvier. C’est à ce moment-là que l’électricité se fait rare en autonomie solaire. Le reste de l’année vous pourrez laisser la lumière allumée, vous serez probablement en sur-production.

Selon votre emplacement géographique, le soleil sera plus ou moins généreux. Par ailleurs, il y a des pertes dans toute installation électrique, nous allons les prendre en compte.
Il faut donc estimer la puissance crête (exprimée en W) des panneaux photovoltaïques à installer pour satisfaire vos besoins en fonction de votre situation géographique et du rendement électrique de l’installation.

La formule est la suivante : Pc = Bj / (Rb X Ri X Ej)

  • Pc (Wc) : Puissance crête (recherchée)
  • Bj (Wh/j) : Besoins journaliers
    • 710Wh/j dans notre cas
  • Rb : rendement électrique des batteries
    • On considère 0.85 en général
  • Ri : rendement électrique du reste de l’installation (régulateur de charge…)
    • On considère 0.87 en général
  • Ej : rayonnement moyen quotidien du mois le plus défavorable dans le plan du panneau (kWh/m²/j). ines.solaire.free.fr permet de le connaître avec précision :
    • On obtient 1.39 pour Nantes avec comme paramètre : Orientation : Sud, Inclinaison : 65°
    • Sur la ligne « Globale (IGP) », récupérez la valeur du mois le plus défavorable (souvent décembre)

Dans notre cas, on obtient :

Pc = 710 / (0.85 * 0.87 * 1.39) = 691 Wc

Pour couvrir ces 691Wc, une hypothèse serait d’acquérir 3 panneaux de 240W.

Les panneaux solaires ont une durée de vie de ~25 ans et sont recyclables 4 fois. Pour amoindrir le coût, il y a de bonnes affaires en occasion.

Les batteries

Elles stockent l’électricité et nous permettent d’en avoir quand le ciel est couvert, ou la nuit. C’est le plus gros poste de dépense et c’est aussi ce qui s’use le plus vite dans une installation. Il est donc important de bien les choisir et d’en prendre grand soin.

Je recommande vivement de prendre des batteries à décharge lente (spéciales pour le solaire), car les batteries de démarrage (conçues pour une décharge forte et courte) ne conviennent pas à cette utilisation. Pour des installations modestes et sobres, préférez des batteries au plomb (car recyclables) de technologie AGM/Gel. Ce type de batteries ne nécessite pas d’entretien, ne dégaze qu’en cas de mauvaise utilisation, et peut tenir 10-12 ans si on en prend soin.

Pour leur garantir une longue vie, il est recommandé de maintenir les batteries entre 10 et 20°, et, autant que faire se peut, au-dessus des 80% de charge. Pour ça, il faut acquérir un contrôleur de batterie : un petit appareil qui (entre autres) indique le pourcentage de charge de vos batteries.

On cherche ici la capacité des batteries, exprimée en ampères heure (Ah) :

Cap = (Bj x Aut) / (DD x U)

  • Cap (Ah) : Capacité des batteries
  • Bj (Wh/j) : Besoins journaliers
    • 710Wh/j (déduit des besoins journaliers)
  • Aut : Nombre de jours d’autonomie (sans soleil)
    • 2 jours ici, 3 dans le centre de le France, 4 à 5 si c’est dans le Nord
  • DD (%) : Degré de décharge maximum
    • Ici 30%, 20% ce serait encore mieux
  • U (V) : Tension finale du parc de batteries. Elle est déterminée en fonction de la puissance totale des panneaux :
    • Inférieur à 500 Wc : 12V
    • De 500 à 1500 Wc : 24V (c’est notre cas)
    • Au-dessus de 1500 Wc : 48V

Dans notre cas, ça nous fait :

Cap = (710 x 2) / (0.3 x 24) = 197 Ah

Le calcul propose un parc de 197Ah en 24V. Une hypothèse serait d’acquérir 2 batteries 200Ah de 12V, à mettre en série pour atteindre 24V.

Attention : Ce type de batterie n’accepte pas de courant de charge supérieur à 20% de sa capacité. Il faut s’assurer que cette limite est respectée.
Dans notre cas, le parc de batteries peut encaisser 40A maximum (20% de 200Ah), et on respecte bien ce ratio car nos panneaux produisent au maximum ~30A (700Wc / 24V de tension du parc de batteries)

Les batteries se détériorent si leurs conditions d’utilisation optimale ne sont pas respectées. Une batterie mal menée tient 1 ou 2 an seulement. Je conseille donc de ne pas acheter de batteries d’occasion, car rien ne garantit que l’utilisateur précédent en ait pris soin (conditions de stockage, dépassement des tolérances…)

Régulateur de charge

Le régulateur de charge est placé entre les batteries et les panneaux, c’est lui qui gère la charge des batteries en fonction de ce que peuvent fournir les panneaux. Le régulateur se choisit en fonction de la puissance du parc de panneaux photovoltaïques ainsi que du voltage du parc de batteries.

On privilégie un câblage en série, car en série les intensités ne s’additionnent pas, et les plus petites intensités limitent les pertes dans les câbles.

Avec nos 3 panneaux en série, nous pouvons utiliser un régulateur de charge MPTT type 150V/35A.
Sur sa fiche technique, on voit qu’avec des batteries en 24V, il accepte :

  • 1000W de puissance maximum de panneaux :
    • Avec un total de 3 panneaux en 240W, on monte à 720W
  • 150V de tension maximum de panneaux :
    • Avec 3 de nos panneaux en série ayant une tension (Vdoc) de 43,6V (c’est différent pour chaque panneau, mais c’est indiqué dans la fiche technique du produit), on additionne et ça monte à 129V
  • 40A de courant maximum de panneaux:
    • Chacun de nos panneaux a une intensité max (Isc) de 7,37A (indiqué dans la fiche technique) on s’applique une marge de sécurité de 38%, on monte à 9.66A. Il y a de la marge !

Convertisseur

Le convertisseur transforme le courant continu des batteries (ici 24V=) en courant alternatif assimilable par les appareils standards du marché (230V~). Il se choisit en fonction de la tension d’entrée (ici 24V) et de la puissance maximum à délivrer (ici 550W).

Une hypothèse serait d’opter pour un convertisseur type 24/800 qui, selon sa fiche technique, monte en puissance maximum de sortie à 700W avec des pointes possibles à 1600W.

Schéma de câblage

Où acheter

Il est possible de tout acheter sur internet. Il y a de nombreux sites spécialisés, mais pour ma part, j’ai préféré me rapprocher d’un professionnel proche de chez moi. C’était sécurisant d’avoir un regard de connaisseur pour valider mon installation. Attention cependant, tous les installateurs photovoltaïques ne sont pas spécialistes dans l’installation autonome ou en site isolé ; beaucoup font simplement de la pose pour des panneaux connectés au réseau électrique national, ce pour quoi il n’y a pas de stockage et donc pas de batteries.

Budget

Pour du matériel neuf et pour cette installation :

  • Panneaux photovoltaïques : entre 569€ et 792€
  • Batteries : entre 864€ et 1 363€
  • Régulateur : ~300€
  • Convertisseur : entre 310€ et 376€
  • Contrôleur de batteries : ~150€
  • Câblage, cosses, fusibles, piquet de terre… : ~60€

Le budget total est donc compris entre 2253€ et 3041€.

Est-ce que c’est rentable ?

Note : Je développe ce point dans un article complet L’autonomie électrique solaire c’est rentable ? C’est écologique ?

La réponse n’est pas simple étant donné que :

  • Avec un fournisseur d’électricité, on peut utiliser nos appareils électriques sans limite tant qu’on paie notre consommation ;
  • Avec une installation autonome c’est « illimité tant qu’il y a du soleil », la seule limite étant la puissance de notre convertisseur ; après l’achat du matériel, peu importe la consommation. La durée de vie d’une batterie c’est ~10, 12 ans, les panneaux 25 ans…

En restant avec notre consommation journalière de 710Wh/j voici un rapide comparatif :

  • EDF : 0.15640 € (le kW)
    • Conso 0,71kWh/j sur 30j = 3,3 + 8,4€ d’abonnement = 11,7 € / mois
  • Enercoop : 0.16830 € (le kW)
    • Conso 0,71kWh/j sur 30j = 3,5 € + 10€ d’abonnement = 13,5 € / mois
  • L’installation autonome (sur 20 ans, avec 1 renouvellement du parc batterie on arriverai à ~3500€):
    • 3500€ / ~20 ans / 12 mois = 14,5 € / mois

Donc si on ne considère que le coût direct ce n’est pas rentable économiquement parlant… Mais ça le devient probablement si on intègre les coûts sociaux, environnementaux et politique présents ou futurs.

Le paradoxe, c’est que les 710Wh/j correspondent au besoin maximum, l’hiver sans soleil, et que 9 mois sur 12 nous sommes en sur-production car il y a plus de soleil. Nous pouvons donc, summum du luxe, laisser la lumière allumée toute la journée 9 mois sur 12 !

Installer

L’installation est plutôt accessible. C’est presque « le fil rouge sur le bouton rouge, le fil vert sur le bouton vert ». Il faut quand même garder à l’esprit que c’est du courant électrique continu et qu’une mauvaise manipulation peut être très dangereuse. Les batteries arrivent chargées. Attention donc à la manipulation. Je ne peux que vous conseiller de bien lire le manuel de chaque appareil (régulateur, convertisseur…) que vous aller connecter. Vous apprendrez, par exemple, qu’il est impératif de brancher le parc de batterie sur le régulateur avant les panneaux. Et qu’il est judicieux de bâcher les panneaux avant de les brancher.

Veillez à éviter les courts-circuits, surtout près des batteries qui peuvent dégager de petites quantités d’hydrogène… gaz très explosif.

Énergie d’appoint

D’autres sources d’énergie peuvent être couplées avec un système solaire autonome :

  • L’éolienne : le coût reste très élevé (même pour une Piggott auto construite) si on le rapporte à ce que ça produit. De plus, pour qu’une éolienne produise un minimum, il faut la mettre à 18m de haut, ce qui nécessite une autorisation de la Mairie. Ceci étant dit, ça reste un bon complément au solaire ;
  • Le pétrole : un groupe électrogène peut permettre de ne pas sur-dimensionner son installation. Il permet potentiellement de :
    • Recharger ses batteries si le soleil n’est pas au rendez-vous afin de leur garantir une longue vie ;
    • Pouvoir utiliser ponctuellement un appareil qui consomme beaucoup : scie circulaire, machine à laver, bétonnière… ;
  • L’hydrolienne…

Ressource pour aller plus loin

Des ressources pour aller plus loin :

Note : L’installation dont il est question ici n’est pas le reflet complet de mon installation. Elle a été simplifiée pour plus de compréhension.

Glossaire technologie :

  • Panneaux monocristallins ou polycristallins à privilégier car bon rendement, Panneaux amorphes bon rendement sous faible luminosité mais mauvais avec de forte luminosité.
  • Régulateur MPPT à privilégier car 95% de rendement. Les régulateur PWM (moins cher) peuvent être pertinent dans des utilisations estival ou dans de toutes petites installations (type poulailler) car il on un rendement 70% (donc 30% de l’énergie du soleil perdu)
  • Batterie AGM ou GEL pour les installation modeste < 350Ah, au dessus passer à des technologie type OPzV, OPzS
  • Convertisseur « Pur Sinus » à privilégier au « Quasis Sinus » dès que vous avez des appareils type ordinateur, pompe, chaîne Hi-Fi ;

Crédit

Auteur : David Mercereau et JLuc de passerelle eco

Licence libre Beerware (Si on se rencontre un jour et que vous pensez que cet article vaut le coup, vous pouvez nous payer une bière en retour)

Appel au traducteur pour CalcPvAutonome (calculateur photovoltaïque autonome)

Edit 27/01/18 : Merci à tous, c’est bon nous sommes à 100% !

Je recherche des traducteurs Français > Anglais pour CalcPvAutonome. Plateforme de traduction : crwd.in/calcpvautonome

Petit rappel : CalcPvAutonome est un logiciel libre (licence Beerware) et gratuit de dimensionnement d’installation électrique solaire en site isolé (autonome). Il se veut transparent (dans la méthode), pédagogique et surtout détaché de toute structure commercial.

Suite à mon dernier article à son sujet, CalcPvAutonome à fait beaucoup de chemin. Au départ, il ne savait pas récupéré les données d’ensoleillement au delà de la France métropolitaine. Devant le nombre de demande extérieur à la France, j’ai pris mon clavier et maintenant j’utilise les données d’ensoleillement du projet PVGIS qui permet désormais à CalcPvAutnome d’aller de couvrir une bonne partie du globe. De ce fait je lance un appel au contributeur traducteur pour m’aider à traduire ce logiciel vers l’anglais. Une fois que ça sera fait, je passerai le logiciel en anglais natif et j’ouvrirai la traduction à toutes les langues du monde (rien que ça)

La plateforme de traduction collaborative est par ici : crwd.in/calcpvautonome

D’avance merci pour vos coups de mains / claviers…

En continuant à utiliser le site, vous acceptez l’utilisation des cookies (au chocolat) Plus d’informations

Les cookies sont utilisés à des fin de statistique de visite du blog sur une plateforme indépendante que j'héberge moi même. Les statistiques sot faites avec un logiciel libre. Aucune information n'est redistribué à google ou autre. Je suis seul autorisé à lire ces informations

Fermer