Fabriquer une batterie de vélo avec des batteries d’ordinateurs de récup’ (18650)

J’ai dans le projet de monter un kit électrique pour pédalier sur mon vélo (transformer un vélo classique en vélo électrique). Dans le but de réduire mon impact sur l’environnement (et aussi parce que j’aime bien les défis techniques) et après avoir vu la vidéo de Barnabé et son vélo électrique, je me suis dit que moi aussi j’essayerais bien de me fabriquer ma propre batterie pour mon vélo. L’économie de l’achat d’une batterie pour vélo est aussi un argument de poids (environ 3/4 du prix d’un kit).

Mon objectif : fabriquer une batterie 48V ~13Ah (soit 13 séries / parallèles)

Faire une batterie a base de cellules lithium issues de vieilles batteries d’ordinateurs

  • C’est donner une seconde vie à un déchet actuellement non recyclé (le litium)

Inconvénient :

  • C’est un projet sur le long court :
    • La récup’, de mon côté ça a été plutôt vite : le dépanneur informatique du village m’a donné un plein carton de vieilles batteries
    • La désossage : c’est pas le plus long…
    • Le test – je vais le détailler juste après, c’est plutôt fastidieux.
  • Sur un vélo les batteries sont vraiment sollicitées (fort courant de décharge), donc quand on part avec des batteries qui ont déjà eu une vie, même si les tests qu’on a effectués sont bons, elles vont vivre moins longtemps (l’avantage étant qu’on sera en capacité de la réparer…). J’ai lu qu’il faut envisager de renouveler 20%/an, ça veut dire que le travail de récup’ / tri / test est quasi perpétuel :-/
    • Pour minimiser cet effet, j’ai choisi de faire une batterie en 48V (en général pour les vélo c’est plutôt 36V), ce qui permet, à stockage égal, de diminuer le courant de décharge et donc de moins solliciter les batteries.

Récup’ démontage

Pour moi la récup’ a été vite faite – l’informaticien de mon village avait tout une caisse de batteries – mais ça peut être fastidieux.

A noter que maintenant, certains dépanneurs ont compris que ça valait de l’argent les cellules lithium, et n’hésitent pas à faire payer pour qu’on revalorise leur déchet…

Protocole de test

Après démontage des batteries, il y a un premier test visuel pour éliminer celles qui ne semblent pas bonnes, comme par exemple celle-ci :

Ensuite je teste la tension de chacune au multimètre et j’élimine toutes les batteries où la tension est <2V (même si certains disent que même à 1V elles peuvent être bonnes, je pense que les chances sont moindres…).

Ensuite je mets dans le testeur, (un OPUS BT C3100 pour ma part, il marche bien !) et je lance un « quick test » le testeur va tester la résistance interne (RI) de la cellule. Je garde uniquement les cellules ou le RI < 300 ohms (plus la résistance est faible mieux c’est !) pour comprendre le RI je vous conseille cette lecture.

De nouveau sur le chargeur je lance un « charge test » à 1000mA de courant. Ça va lui faire faire un cycle : charge – décharge – charge et ça va compter les « mA » qui lui reste dans le ventre (ça donne la capacité de la batterie). A cette étape, j’ai gardé uniquement les cellules >2000mA. Il faut compter 9h pour le test complet. C’est le test le plus long… En plus de mon côté je fais ça « quand il y a du soleil » avec mon installation solaire autonome donc l’hiver c’est pas tous les jours…. J’ai testé 165 cellules, avec un OPUS à 4 slot, faut compter 52 jours (à raison d’1 test/j).

Suite à la charge, j’élimine toutes les batteries qui ne montent pas au dessus des 4V une fois chargées.

2 mois après les cycles de tests, si la batterie s’est « autodéchargée » à plus de 0.07V, je l’élimine aussi.

Donc pour résumer :

  • Tension de départ (en l’état) >2V
  • Un RI < 300
  • Capacité encore > 2000mA
  • Un voltage en fin de charge >4V
  • Une autodécharge <0,07V

Pour les curieux, je vous mets une image du tableau de synthèse :

Le fichier source au format odt (open document tableur).

Statistique

J’avais récupéré une grosse trentaine de batteries de PC, chacune contient entre 4 et 8 (fréquemment 6) cellules.

Pour un total de ~210 cellules 18650, au final j’en ai utilisé 78 (et encore en cherchant bien).

Un taux de réutilisation de 36%

Assemblage

Il faut un équilibre dans les cellules, chaque parallèle doit avoir la même capacité (Ah testé plus haut). Pour cela vous pouvez utiliser un site qui fait ça pour vous : https://www.repackr.com. Un extrait de ce que ça m’a donné :

2457   2364   2563  …
2445   2331   2346  …
2440   2273   2331  …
2132   2264   2281  …
2108   2243   2092  …
2098   2207   2067  … encore 10 colonnes...

Ici chaque colonne représente une parallèle. la première colonne = 13680mA, la seconde 13682mA… bref le logiciel mixe les cellules pour obtenir une capacité uniforme sur chaque parallèle.

Pour l’assemblage « physique » Il y a 2 grands choix :

  • Assembler soudé avec bus bar + fil fusible, c’est une solution très économique mais pour changer quelques cellules défectueuses, ça devient très pénible je trouve ;
  • Assembler par « serrage ». Il y a différents types : vruzend, 18650.lt… C’est plus cher, mais ça me semble plus simple à démonter en cas de pépin isolé…

J’ai choisi un assemblage par serrage pour faciliter le démontage (dans l’optique ou il faut changé 20% des cellules / ans ça me semble plus pratique…).

Le schéma global 13 séries, 6 parallèles :

Le BMS

Le BMS (Battery Management System) est un système électronique permettant le contrôle et la charge des différents éléments d’une batterie d’accumulateurs

Il surveille l’état de différents éléments de la batterie, tels que : tension température, état de charge, état de santés…

Wikipedia fr BMS

C’est donc un élément indispensable pour gérer les batteries 18650. Il se choisi en fonction du nombre de cellules que vous avez à connecter en série (ici c’est donc un 13S).

Pour faciliter le branchement, j’ai installé un connecteur étanche XT90 (que vous voyez en jaune).

Petite sacoche

Ma couturière préféreé ma confectionné une sacoche étanche. Pour éviter le poinçonnage sur la sacoche j’ai ajouté une chute de membrane EPDM (de reste de ma toiture) mais elle n’est pas visible sur ces photos.

Rendu sur le vélo

Voilà ce que ça donne sur le vélo. Je n’explique pas ici comment j’ai installé mon kit moteur Bafang car c’est déjà bien documenté sur internet.

J’ai mis la batterie sous le cadre avant ce qui permet de mieux équilibrer le poids du vélo (c’est un vélo hollandais, la roue arrière porte déjà beaucoup a cause de la posture du cycliste) et ça permet aussi de conserver un porte bagage utilisable.

Prix

En gros voilà ce que ça m’a coûté en €.

  • Connecteurs XT90 M/F : 2,5€
  • BMS 13S 48V 20A Li-ion Cell Battery ANN Balanced E-bike 18650 : 25€
  • Pour l’assemblage : Vruzend V2 18650 Battery Kit : 35 x 3 = 105€

Total : ~130€, une batterie similaire (13A 48V) coûte entre 250€ et 400€

Et comme dit plus haut c’est énormément de temps… donc ce n’est économiquement pas hyper viable mais écologiquement ça se tient, c’est donner une seconde vie à des batteries qui seraient parties à la poubelle (en France il n’y a actuellement aucun circuit de recyclage pour les cellules lithium, ça coûte moins cher d’exploiter les gens loin…).

Retour d’expérience

Cela fait maintenant plusieurs mois que j’utilise mon vélo (maintenant) électrique avec mon moteur Bafang et franchement, ça change la vie. Moi qui n’ai pas de voiture, ça permet d’étendre son périmètre de circulation de façon non négligeable. De plus le vélo est encore utilisable « sans l’électricité » en retirant la batterie car le moteur est placé à un endroit qui ne déséquilibre pas le vélo.

Notez que j’ai acheté mon kit avec une batterie. J’ai donc 2 batteries, une « neuve » et une « de récup » (dont cette page rend compte). Pour le moment, je ne constate pas de grande différence en terme de tenue de charge (complexe à comparer). En tout cas, la batterie « de récup » me satisfait. Je fais entre 50 et 80km avec un charge de batterie (ça dépend comment j’appuie sur les pédales/le chargement… Mais pourquoi diable as-t-il acheté une batterie « neuve » ? Et bien :

  1. Parce que je suis en situation d’autonomie électrique et l’hiver il y aura certainement des moments ou je ne pourrai pas recharger, ça me fait du stockage en plus donc.
  2. Parce que c’est BEAUCOUP de temps de faire sa batterie de vélo, et que je commençais à douter d’y arriver et je ne sais pas si je vais avoir le jus pour changer 20% des cellules / ans…

Aller plus loin

Réglage BMV – Contrôleur batterie pour solaire autonome

Note explicative adapté au contexte solaire pour le contrôleur de charge Victron BMV Le manuel en Français est accessible a cette adresse

Avertissement : Ayé à l’esprit que la donné de pourcentage de charge du BMV sont a prendre avec un certain recule (source1, source2), d’autant plus si les paramétrages par défaut est laissé sur celui-ci. Cette notice est là pour vous aider à affiner vos réglages afin de s’approcher tant que faire ce peu de la vérité.

Cette notice a été rédigé de façon collaborative, une discussion est en cours sur cette notice, si vous voulez participer c’est par ici.

Paramètres

Les paramètres modifiables sont les suivants (voir la notice pour aller au menu de SETUP)

01 Battery capacity (Capacité de batterie)

Capacité de la batterie en ampères heures

Capacité en C20 (voir la doc de votre batterie)

Exemple

  • 1 batterie de 220Ah/12V seule : 220
  • 2 batteries 220Ah/12V en série : 220
  • 2 batteries 220Ah/12V en parallèle : 440
  • 4 batteries 220Ah/12V en série : 220
  • 4 batteries 220Ah/12V 2 série de 2 parallèle : saisissez 440

02. Charged Voltage (Tension chargée)

La tension de la batterie doit être supérieure à cette valeur pour que celle-ci soit considérée comme pleine.Le paramètre de tension chargée doit toujours être légèrement en dessous de la tension de l’état de charge du chargeur (en général 0,2V ou 0,3V en dessous de la tension float du chargeur).

Préalablement il faut s’assurer que la tension « float » de votre régulateur est adéquate par rapport à celle de vos batteries. Si je prends pour exemple une batterie AGM Victron, la documentation annonce une tension float de 13,5 -13,8V. Mon régulateur doit avoir la même tension de float.

Sur le BMV il faut indiquer tension « float » du régulateur à laquelle on soustrait 0,2-0,3V. La tension de float est celle du régulateur. Si votre régulateur a une tension de float paramétré à 13,8, il faut indiquer 13,6 dans le BMV.

Si vous avez 2 batteries 12V en série multiplier la tension chargé par 2 (exemple une tension de float 13,8 est à 27,6 pour 2 batterie 12V en série)

03. Tail current (Courant de queue)

Une fois que le courant de charge a chuté en dessous du courant de queue spécifié (exprimé en pourcentage de la capacité de la batterie), la batterie sera considérée comme étant entièrement chargée.Remarque:Certains chargeurs de batterie cessent de charger si le courant descend en dessous d’un seuil spécifique. Le courant de queue doit être paramétré avec une valeur supérieure à ce seuil.

Par défaut c’est à 4% il faut modifier cette valeur à :

  • 2% pour l’usage en solaire avec batterie plomb
  • Laisser 4% pour le litium

04 Charged detection time (Durée de pleine charge)

Il s’agit de la durée durant laquelle les paramètres définis (Tension chargée et Courant de queue) doivent être atteints pour considérer que la batterie est entièrement chargée.

Par défaut c’est à 3min. Dans un premier temps c’est pas mal, vous pouvez augmenter jusqu’à 10 min.

05 Peukert exponent (Indice Peukert)

Si l’indice n’est pas connu, il est recommandé de maintenir cette valeur à 1.25 (par défaut) pour les batteries plomb-acide et de la modifier à 1.05 pour les batteries au lithium-ion. Une valeur de 1.00 désactive la compensation Peukert.

En général :

  • 1,25 pour le plomb-acide
  • 1,05 pour le litium

Le mieux est de calculer le coefficient de Peukert qui correspond à votre batterie à partir des données constructeur. Il vous faut la donnée de capacité en C20 et en C1. Ensuite vous pouvez indiquez ces informations dans une calculette d’exposant Peukert comme celle-ci : https://fr.planetcalc.com/2268/

  • Par exemple pour une AGM 220Ah Deep cycle :
    • C20 (décharge en 20h) elle est donnée pour 220Ah
    • C1 (décharge en 1h) elle est donnée pour 65% donc 143Ah (220*0,65)
    • Le résultat de la calculette de coefficient Peukert est donc de 1.17 pour cette batterie (voir le calcul)

06 Charge Efficiency Factor (Facteur d’efficacité de charge)

Le Facteur d’Efficacité de Charge compense les pertes en ampères-heures qui se produisent pendant la charge.100% veut dire aucune perte.

  • Par défaut 95%
  • 85% pour le plomb (source1, source2) pour un dimensionnement correct avec une décharge de 10, 20% quotidienne. Un ajustement a faire selon utilisation (source1, source2)
  • 95% pour le litium

07 + Autres

Peuvent être laissé par défaut ou aux choix de l’utilisateur RTFM.

Conseil

Synchroniser

Synchronisé 1 fois par semaine (dans l’idéal pour une bonne fiabilité, 1 fois par mois au maximum) votre BMV, attendez une belle journée ensoleillée, que le régulateur soit en float depuis quelque temps et appuyé 3 secondes sur + et –

Le BMV peut également être synchronisé en mode d’exploitation normal en appuyant en même temps sur les boutons + et – pendant 3 secondes.

Recharger les batteries quotidiennement à 100% diminue le risque d’erreur dans le calcul du SOC (%)

Ajuster

Une surveillances des données est une bonne chose, en ça il est pertinent d’avoir du monitoring sur son installation (des courbes d’histoire) pour déceler les incohérences, problèmes de paramétrages…

Par exemple si vous constatez des « bons » de ~95% à 100% durant la charge par exemple c’est que vous pouvez augmenter le paramètre d’efficacité de charge (06).

Autre exemple : si votre courbe de charge de ralentie pas (fait un petit plat) en fin de charge c’est peut être que la tension chargé (02) est trop faible ou que votre coefficient de Peukert n’est pas le bon.

Sources

Licence

Créative Common CC0 : https://creativecommons.org/share-your-work/public-domain/cc0/

Cabane (micro MOB) pour enfant

Avec tous mes chantiers du moment, j’avais pas mal de chutes à traîner sur le terrain et j’avais envie de faire une petite cabane d’enfant pour ma fille… J’ai principalement utilisé les chutes de bois d’ossature (douglas 45×85) et de l’OSB de contreventement 8mm de ma cabane de jardin mini MOB, et puis de la tuile plate du clocheton. On m’a donné un toboggan en plastique, ce qui m’a décidé à me lancer… J’avais aussi pas mal de restes de visserie (issue du chantier paillourte & cabane). Donc en gros pour ce petit projet, j’ai dû racheter quelques liteaux pour la toiture, les charnières des portes/fenêtres, les supports des poteaux et quelques planches de bardages.

Je ne vais pas trop détailler techniquement ici parce que j’ai ré-utilisé des techniques que j’avais déjà utilisées et documentées.

J’ai fait une dalle bois comme pour la mini MOB, avec les mêmes supports réglables (qui permettent aussi une rupture capillaire). A ceci près que là c’est « sur pilotis ». Les plots en béton sont en fait des parpaings (2 supperposés) qu’il me restait de mes « fondations de yourte« , dans lesquels j’ai coulé un peu de béton avec des petits morceaux de ferraille qui traînaient pour le passage de l’un à l’autre (éviter cisaillement).

J’ai ensuite construit les murs au sols. Des chutes de 45×95 et de l’OSB pour contreventer le tout. J’ai quand même simplifié par rapport à une MOB : il n’y a pas de lisse basse, pas de lisse haute… c’est une cabane pour enfant, je vais pas m’amuser à suivre les DTU… Si jamais vous voulez plus d’info sur les écarts de vis, entraxes d’ossature, etc., j’en dis plus sur l’article de la mini MOB. En gros, là, j’ai fait « avec le bois que j’avais » / les tailles de vis qui me restait…

Le montage des murs s’est fait facilement : c’était pas trop lourd à porter à bras d’homme vue la taille. J’ai mis une faîtière d’une section 145×45 de reste de la structure de mon lit.

Pour la toiture j’ai contreventé en OSB 8mm et j’ai fait comme pour le clocheton de la paillourte : même pente de toit, même technique de pose de tuile… sauf qu’il y avait beaucoup moins de découpes :-). En faîtière pour les tuiles, j’ai récupéré 10 tuiles canals qui s’ennuyaient dans le jardin de mon voisin… ça fera le temps que ça fera et s’il y a des infiltrations c’est pas la mort, il y a le pare-pluie et pas d’isolant… et c’est une cabane d’enfant…

Pour les rives, je suis pas très fier du résultat mais bon je n’avais pas la motivation d’acheter des tuiles plates de rives donc j’ai fait comme j’ai pu (bourré de mortier + tuiles vissées au bois…)

Il ne reste plus qu’à barder (même technique que pour la mini mob).

Vue d’ensemble du résultat final :

La porte en OSB tiendra pas bien longtemps mais bon j’avais plus que ça sous le coude alors ça tiendra le temps qu’il faut…

PvMonit – Boîtier impression 3D

Un utilisateur de PvMonit (logiciel libre de monitoring photovoltaïque autonome et de gestion du surplus solaire) ayant pour alias Akoirium, à contribué à PvMonit en proposant des boîtier imprimable en 3D. Voilà ce que ça donne avant et après :

Pour le TM1638 (circuit de gauche)

Le circuit TM1638 est utilisé pour la gestion de la domotique (optimisation surplus solaire), il existait déjà des modèles de boîtier, Akoirium s’en ai donc inspiré :

  • https://www.thingiverse.com/thing:3578683
  • Un autre modèle : https://www.thingiverse.com/thing:2794902

Voici les fichiers sources sous licence GPL

Pour l’Adafruit 16×2 Character LCD

Pour l’adafruit 16×2, utilisé pour lire les informations de l’installation solaire, Là Akoirium c’est aussi inspiré de projet existant sur thingiverse. C’est pas parfait (il faut gratouillé un peu quand certaine soudures sont trop épaisses), mais c’est franchement pas mal. De mon côté il m’avait envoyé les boutons mais je les ai perdu donc j’ai coupé des visses de 2×20 pour faire les boutons n’ayant pas d’imprimante 3D, ça fait le taf 🙂

Voici les fichiers sources sous licence GPL

Merci encore à Akoirium pour cette contribution !

Stage/atelier : Comprendre et concevoir votre installation solaire électrique autonome

Quelques places pour le 29-30 août.

Parce qu’à mon sens, la sobriété est complexe dans ce monde d’abondance apparente. Je vous propose un petit atelier de formation d’une journée afin de vous initier à l’autonomie électrique photovoltaïque. Vous repartirez avec les clés pour comprendre et concevoir votre installation solaire autonome. Cet atelier est organisé chez moi, à la paillourte avec mon installation solaire comme support pédagogique.

Le savoir partagé :

  • Compréhension des éléments de l’installation solaire autonome : production, stockage, gestion et transformation de l’énergie, sécurité ;
  • L’estimation de ces besoins électriques journaliers ;
  • Dimensionnement de leur système électrique autonome (combien de panneaux, puissance du régulateur etc…) en fonction de ces besoins ;
  • La capacité d’installer son propre système solaire autonome (choix matériel, câblage…) ;
  • La capacité de maintenir son installation en état de fonctionnement en ayant intégré les contraires techniques des différents éléments (ex : température idéal pour les batteries, courant de charge maximum…) ;
  • Des clefs pour gérer le surplus énergétique ;
  • Le coût, la rentabilité ;
  • Une vidéo « replay » de la formation sera mis à disposition ;

Ce qui ne sera pas abordé durant ce stage :

  • Les panneaux solaires raccordés au réseau (auto-consommation / revente partielle ou totale)

Public : le citoyen X, Y, le toi, le nous ! (Aucun niveau de connaissances préalables n’est requis). La jauge est de 10 personnes.

: A Rouans (44640), prêt de Nantes

  • En transport en commun : Vous pouvez venir jusqu’en Train sur Nantes, il y a un Car (ligne 301 aleop) qui part de la gare SNCF pour venir jusqu’à Rouans.

Quand : 2 dates prochainement :

  • 13-14 juin 2020 de 9h30 à ~17h30 (réserver)
  • 29-30 août 2020 de 9h30 à ~17h00 (réserver)

Prix : libre et conscient (à lire pour être en plein accord) – un acompte de 10€ pour valider la réservation est demandé.

Hébergement possible :

  • Vous pouvez planter une tente dans le jardin, garer votre votre camion / camping-car gratuitement dans le terrain. Soyez autonome.
  • Louer une chambre d’hôte, 2 adresses accessible à pied :

Infos supplémentaires :

  • Pour les repas je propose :
    • Samedi midi : auberge espagnol (chacun apporte un plat, on pose tout sur la table et on partage)
    • Samedi soir : pour ceux qui souhait rester manger apporter de quoi cuisiner et on cuisine ensemble
    • Dimanche matin : offert (pain/café/thé/tisane)
    • Dimanche midi : repas offert: « grâlées de mogette »
  • Apportez calculatrice, papier, crayon
  • Si vous voulez vous rapprocher le plus possible de la vérité, venez avec la liste de vos appareils électriques ainsi que la puissance (en Watt) de chacun. Un petit logiciel pour vous y aider : david.mercereau.info/AtelierPv/

Contactez moi (zéro six 63 69 16 04) pour tout détails

Pour réserver :


PvMonit v2.0 + Domotique : Gestion surplus électrique solaire en autonomie

Ou comment utiliser le surplus d’une installation solaire autonome

Dans le cas d’une installation solaire autonome (non raccordée au réseau EDF), une fois que les batteries sont rechargées (ce qui se produit aux alentours de 11h-12h pour moi 80% du temps), il y a de l’énergie potentielle de perdue. Plus précisément, si je n’utilise pas cette énergie au moment où il y a du soleil (de la production), cette énergie n’est pas utilisée. On peut augmenter le stockage mais c’est infini, coûteux en argent et en ressource environnementale. Voilà un graphique pour illustrer ce propos :

Courbe production solaire estivale en situation d’autonomie électrique avec des panneaux photovoltaïques

Du coup, il m’a semblé pertinent de réfléchir à un moyen d’automatiser certaines tâches qui me permettent d’utiliser ce surplus d’électricité quand il est là. Actuellement, je le fais de façon tout à fait manuelle : quand les batteries sont pleines et qu’il y a du soleil, je lance une machine à laver, je lance la pompe de relevage de la phyto, je recharge mes batteries d’outils portatifs…. Cette automatisation va aussi me permettre d’aller plus loin & d’envisager d’installer un petit chauffe-eau électrique de camion (~10L) ou autres…

Grâce à PvMonit, j’avais déjà une remontée d’informations sur l’état de l’installation solaire, des batteries, de la production qui m’arrivait sur un Raspberry PI. Il ne me restait plus qu’à « piloter des prises électriques » en fonction de l’état de l’installation solaire et des conditions que je donne au programme.

Soutenir / Commander

Si vous voulez soutenir le projet ou que vous n’avez pas suffisamment de compétences pour faire tout ça, je peux tout vous préparer à la maison, il n’y aura plus qu’à brancher… C’est à prix libre et c’est sur mesure selon vos compétences/besoins, on en parle ? : https://david.mercereau.info/pvmonit/#shop

Le projet, en vidéo

Le projet, en image

Voilà de quoi est composé le tout :

  • Le raspberry pi (zéro ça suffit) sur lequel est installé PvMonit (expliqué ici) : compter entre 110 et 200€ de matériel
  • Carte module 8 relais 8,99€
  • TM1638 Afficheur 8 chiffres 7 segments, 8 LEDs, 8 boutons (option) 5,49€

Si vous n’aimez pas les vidéos je vous mets des z’images :

Installation

Pour l’installation, vous pouvez vous reporter au dépôt du code source PvMonit, dossier « domo » : https://framagit.org/kepon/PvMonit/blob/master/domo/

Si vous avez des questions / bugs, c’est par ici : https://framagit.org/kepon/PvMonit/issues

Cabane de jardin (mini MOB)

J’ai déjà fais une yourte et une paillourte mais j’avais jamais fait de MOB (maison ossature bois) alors, pour pas mourir idiot, j’en ai fait une petite :-p et une carrée en plus (pour changer). Il s’agit d’une cabane de jardin de 11,3m² de surface plancher avec un préau au nord pour stocker le bois de chauffage, les vélos…

Il s’agit d’une cabane à la mode « MOB » ossature douglas, contre-ventée en OSB 3, bardage agricole, toit mono-pente en bac acier.

C’est un chantier fait avec des matériaux « neufs » (pas trop mon habitude) et achetés pour plusieurs raisons :

  • Facteur temps : j’ai envie de sortir la tête des chantiers, j’avais donc pas trop de temps devant moi et faire de la récup’ (ça prend beaucoupppp de temps). Travailler avec des matériaux bruts aussi, parce qu’il faut s’adapter/les transformer (je pense à un tronc d’arbre VS une poutre de bois déjà carrée…. Au final, ça va nous coûter un petit billet. Mais bon, on s’en est bien sorti financièrement avec la maison alors on peut flamber un peu.
  • C’est une cabane de jardin qui est conçue de façon à pouvoir être transformée facilement en « chambre d’ado » dans le futur. En effet il n’y aura plus qu’à mettre de l’isolant entre l’ossature et refermer les caissons… De ce fait, je ne me voyais pas la faire en palettes…

Grand merci à Kévin et Salomé qui sont comme des pingouins dans le désert. Je me suis beaucoup inspiré de leur abri de jardin, ils m’ont bien pré-mâché le travail, ça m’a facilité la vie !

Les plans

Petite modélisation sketchup avant toute chose. Je vous la partage, mais elle n’est pas/plus trop le reflet de la réalité sur pas mal de point (longueur du bâtiment fausse, lisse haute pas dessinée…)

Télécharge la source .skp

Des photos du plan

Déclaration préalable

Et oui parce qu’on est en France, faut bouffer du papier…. Mais une déclaration préalable suffit car le bâtiment fait 19,5m² de toiture et la limite qui nécessite de passer à un permis de construire est à 20m²…. Voici le dossier (sans le CERFA) que j’ai fourni pour ma déclaration préalable.

Le bois est arrivé 🙂 3, 2 1 partez !

Fondation / dalle bois

En guise de fondations, j’ai juste 2 hauteurs de parpaings (1 enterré et 1 qui ressort) posés sur un lit de sable pour faire la mise à niveau plus facilement. On m’a conseillé de laisser 20cm de circulation d’air sous la dalle bois pour que ça puisse sécher / ne pas pourrir.

Il me restait de l’EPDM de la toiture végétalisée de la paillourte que j’ai mis en rupture capillaire, entre le parpaing et la dalle bois.

Erreur de ma part : pour la dalle, il faut du bois classe 3 minimum. Hors j’ai commandé du douglas. Le douglas est un bois de classe 3 hors aubier (partie claire), sinon c’est du classe 2. Pour les parties que je voulais mettre en dalle, j’aurais dû spécifier « hors aubier » à la scierie. Par chance, j’avais pas mal de morceaux avec peu ou pas d’aubier, j’ai donc trié et privilégié ceux-ci pour la dalle.

Pour la fixation des solives, j’ai utilisé des sabots parce que je voulais « pas me faire chier » mais ça rajoute un bon billet, un truc plus économique, c’est un tasseau tout le long sur le quel repose la pointe de la solive + des vis depuis l’extérieur de la dalle… (pas facile d’expliquer et j’ai pas la motivation de faire un dessin…)

Le plancher a été fait avec des dalles d’OSB 3 22mm rainurées. J’ai mis la lisse basse autour du plancher pour qu’il (l’OSB) soit démontable depuis l’intérieur si on veut l’isoler un jour…

Niveau visserie :

  • 6×100 pour assembler les 45×220 de la dalle
  • 4×20 pour fixer les sabots à la dalle
  • 5×50 pour fixer l’OSB 22mm sur les solives
    • Espacés de 15cm en périphérie de plaque
    • Espacés de 30cm le reste du temps…
  • 6×100 pour assembler la lisse basse à la dalle

Normalement, l’OSB se met en quinconce mais pour moi ça tombait mal, trop de chutes donc tant pis… Pour bien faire vous pouvez regardez ce lien.

Les murs

L’ossature des murs est en douglas (50×100) brut contreventé avec de l’OSB 3 9mm.

L’assemblage de l’ossature en douglas c’est fait avec des vis 6×100 (2 par point de fixation). Il faut bien vérifier l’équerrage tout le temps… avec la diagonale, ou avec cette astuce de la règle « 3, 4, 5 » (merci les pingouins).

L’OSB est vissé avec de la 5×50 tous les 15cm en périphérie de plaque et tous les 30cm pour le reste (oui ça fait un paquet de vis…). Il faut prévoir de la marge entre 2 panneaux (2, 3mm) pour qu’ils puissent gonfler/travailler)

J’ai agrafé le pare-pluie de façon sommaire, le temps d’appliquer les lattes de bois. J’avais un reste d’agrafes inox… Attention, il est préférable de mettre les agrafes uniquement là ou il va y avoir des lattes (devant les montants), histoire qu’elles soient recouvertes.

J’ai pas « tout scotché » comme les pingouins. C’est peut être précisé dans les DTU mais mince pour une cabane de jardin ça fait beaucoup de scotch à 40€ le rouleau… Et si jamais ça devient habitable, ça facilitera le renouvellement de l’air par défaut d’étanchéité 🙂

Les lattes (27×40) sont vissées avec des 5×60 tous les 30cm par dessus les agrafes et sont prises dans les montants (si c’était que dans l’OSB 9mm, ça serait pas du tout résistant à l’arrachement et c’est ce qui tient tout le bardage…)

L’entraxe des liteaux est de 60cm parce que c’est la moitié d’une plaque d’OSB (280×120). J’ai donc pris un pare-pluie en conséquence (qui accepte cet écart).

Mon pare-pluie n’est pas scotché avec du scotch étanche parce que ça coûte une blinde et que ça ne me semble pas nécessaire en l’occurrence. Si c’est pour une maison RT2012 étanche à l’air, alors là oui, ça me semble préférable (ça permet déjà de limiter sur une première couche). Mais ici, j’ai fait des beaux recouvrements, j’ai commencé de bas en haut pour que le recouvrement soit dans le bon sens… la base quoi.

Niveau visserie :

  • 6×100 pour assembler l’ossature des murs
  • 5×50 pour l’OSB de contreventement 9mm
    • Espacées de 15cm en périphérie de plaque
    • Espacées de 30cm le reste du temps…
  • Pointes inox 2.5×60 annelées pour le bardage

Pour la levée des murs, on était 4, ça a duré ~1h… facile : ça c’est bien mis… J’ai pas pris de photo parce que j’étais bien occupé…

Niveau visserie :

  • 8×80 avec tête disque (plate pas fraisée histoire que ça ne s’enfonce pas) pour fixer les murs au sol.
    • J’en ai mis une au milieu de chaque entraxe de montant de mur donc un bon petit paquet…
  • Tirefonds 12×100 pour assembler les murs entre eux.
    • 4 par murs

Le préau

Un petit préau est prévu côté Nord pour stocker le bois, les vélos… Il a été fait en douglas 10cm x 10cm. L’assemblage a été fait à mi-bois + tige filetée de 8 pour maintenir le tout.

Merci à mon papa pour le coup de main !!!

Il a été assemblé à la cabane avec des sabots ailes intérieurs. On a fait l’assemblage au sol, puis assemblé / ajusté et vissé. Ensuite, on l’a présenté et maintenu en hauteur sur des tréteaux.Puis j’ai mis les tiges filetées pour tenir les assemblages. Enfin, j’ai coulé les plots béton (même profondeur que la cabane).

Toit

Même principe que pour les murs… Ossature en 50×100, entraxe de 45, contreventé en OSB 9mm, pare-pluie…

Le lattage est en 27×45 et les chevrons en 50×50.

Niveau visserie :

  • 6×140 pour fixer l’ossature dans la lisse haute
  • 6×80 pour larder les cache moineaux
  • 5×50 pour l’OSB
  • 6×80 pour le lattage (27×45) dans le sens de l’écoulement
  • 6×100 pour fixer les chevrons (50×50) sur les lattes

Couverture

J’ai tiré des « cordeaux » au dessus des chevrons de 50×50 histoire de bien visser dedans.

La dernières plaque n’est pas entière j’ai donc dû la découper à la scie sauteuse. Ici la meuleuse à proscrire pour ne pas trop chauffer la plaque et faire sauter la galvanisation, la grignoteuse c’est le top mais j’en ai pas… Du coup, et par acquis de conscience, j’ai mis un coup de bombe galvanisante sur l’arrête coupée (parce que j’en avais une d’entamée) et la découpe n’est pas exposée car sous la rive.

C’était agréable à faire parce que ça a été très vite, une journée tout seul pour faire toute la toiture…

Et voilà c’est terminé

Il me reste la gouttière et la gestion des angles sur le bardage mais on verra plus tard…

Le budget

Temps passé : 21 jour-homme (sur chantier, sans compter la recherche et la récupération des matériaux).

TâcheTemps (en J)
Plots fondation / mise à niveau / petit terrassement2,5
Dalle en bois et lisse basse1,5
Ossature mur6
Bardage mur5
Ossature toit3
Préau2
Couverture bac acier1

Budget : 3 444€

Le bois1 808 €
Sabot solivage79 €
Visserie89 €
Tôle / couverture228 €
Kit fixation couverture90 €
Porte120 €
Fenêtre20 €
Pointes inox pour bardage88 €
Panneaux de bois462 €
Ancrage au sol77 €
Écran sous toiture95 €
Dalle Bois (OSB 22mm)164 €
Liteaux pour bardage90 €
Supports poteau6 €
Grille anti rongeur28 €

On peut avoir un abri de jardin « tout prêt » pour le même prix en grande surface (à superficie égale). Mais celui-ci sera (j’en suis sûr) plus durable (quand je vois en quoi ils sont faits… on peut à peine dire que c’est du bois…).